Guiding the Search for Native-like Protein Conformations with an Ab-initio Tree-based Exploration
نویسندگان
چکیده
In this paper we propose a robotics-inspired method to enhance sampling of native-like conformations when employing only aminoacid sequence information for a protein at hand. Computing such conformations, essential to associating structural and functional information with gene sequences, is challenging due to the highdimensionality and the rugged energy surface of the protein conformational space. The contribution of this paper is a novel two-layered method to enhance the sampling of geometrically distinct low-energy conformations at a coarse-grained level of detail. The method grows a tree in conformational space reconciling two goals: (i) guiding the tree towards lower energies and (ii) not oversampling geometrically similar conformations. Discretizations of the energy surface and a low-dimensional projection space are employed to select more often for expansion low-energy conformations in under-explored regions of the conformational space. The tree is expanded with low-energy conformations through a Metropolis Monte Carlo framework that uses a move set of physical fragment configurations. Testing on sequences of eight small-to-medium structurally diverse proteins shows that the method rapidly samples native-like conformations in a few hours on a single CPU. Analysis shows that computed conformations are good candidates for further detailed energetic refinements by larger studies in protein engineering and design. KEY WORDS—native-like protein conformations tree-based search guided exploration discretization layers projection space energy landscape robotics-inspired probabilistic sampling The International Journal of Robotics Research Vol. 29, No. 8, July 2010, pp. 1106–1127 DOI: 10.1177/0278364910371527 c The Author(s), 2010. Reprints and permissions: http://www.sagepub.co.uk/journalsPermissions.nav
منابع مشابه
An Ab-initio tree-based exploration to enhance sampling of low-energy protein conformations
This paper proposes a robotics-inspired method to enhance sampling of native-like protein conformations when employing only amino-acid sequence. Computing such conformations, essential to associate structural and functional information with gene sequences, is challenging due to the high-dimensionality and the rugged energy surface of the protein conformational space. The contribution of this wo...
متن کاملIn Search of the protein Native State with a Probabilistic Sampling Approach
The three-dimensional structure of a protein is a key determinant of its biological function. Given the cost and time required to acquire this structure through experimental means, computational models are necessary to complement wet-lab efforts. Many computational techniques exist for navigating the high-dimensional protein conformational search space, which is explored for low-energy conforma...
متن کاملOptimizing weights of protein energy function to improve ab initio protein structure prediction
Predicting protein 3D structure from amino acid sequence remains as a challenge in the field of computational biology. If protein structure homologues are not found, one has to construct 3D structural conformations from the very beginning by the so-called ab initio approach, using some empirical energy functions. A successful algorithm in this category, Rosetta, creates an ensemble of decoy con...
متن کاملAb Initio Study of Conformational and Configurational Properties of 1, 3- Diazacyclohepta-1, 2-diene and 1, 3-Diazacycloocta-1, 2-diene
Ab initio calculations at HF/6-31G* level of theory for geometry optimization and MP2/6-31G*//HF/6-31G* for a single point total energy calculation are reported for the importantenergy-minimum conformations and transition-state geometries of 1, 3-diazacyclohepta-1, 2-diene (2) and 1, 3-diazacycloocta-1, 2-diene (3). The C2 symmetric twist-chair (2-TC)conformation of 2 is calculated to be 7.4 kJ...
متن کاملConstructing side chains on near-native main chains for ab initio protein structure prediction.
Is there value in constructing side chains while searching protein conformational space during an ab initio simulation? If so, what is the most computationally efficient method for constructing these side chains? To answer these questions, four published approaches were used to construct side chain conformations on a range of near-native main chains generated by ab initio protein structure pred...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Robotics Res.
دوره 29 شماره
صفحات -
تاریخ انتشار 2010